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Foreword

a. The objective of this program was to develop practical
design techniques for broadband, phase stable, high power,
klystron microwave amplifiers in a concise mathematical form.
The analytic model developed was to be accurate at all signal
levels and sufficiently general to include significant space charge
modes. The predicted interaction was to be investigated for
synthesis methods for the design of amplifiers with specific charac-
teristics. Sample design calculations for an amplifier with supplied
parameters was to be carried out following the successful develop-
ment of the theoretical model.

b. The contractor developed a statement of the beam space
charge interaction in the linear or small signal section of the
amplifier in matrix notation and from this deduced a gain equation
in closed form for the synchronously tuned cavity case. The re-
sulting amplifier design required many cavities tuned to a frequency
above the operating frequency. This, however, produced a very
high gain peak at the cavity resonant frequency which required elim-
ination to prevent oscillation. The calculations necessary to slightly
detune the cavities and eliminate the gain peak were not reducible
to any short form so a computer would be required to make the cal-
culations. The large signal beam intera'tion theory was developed
in the infinite beam model for one gap and drift tube, however, the
initial conditions encountered at the second gap precluded a solution
in closed form for the two or more gap case. The sample design
was completed in a very elementary form because of the extremely
short time remaining in the contract period when the theoretical
portion of the program was completed.

c. The design techniques developed in this contract have been
developed in theory only. Experimental klystrons developed by
other contractors have demonstrated the validity of some of the
results predicted by this theory but no amplifier has been built using
this design technique. This large signal theory has eliminated
several important approximations made in other theories but requires
more work to be completely developed for two or more gap interactions

d. An analytic model of the gain equation for a klystron type
amplifier which allows synthesis of amplifiers with broadband and
controlled frequency characteristics will be of considerable use in
the design of amplifiers for advanced radar systems.

Frank E. Welker, l/Lt, USAF
Project Engineer
RADC, Griffiss AFB, NY
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Abstract

Matrix methods are used in an attempt to clarify the predic -
tions of many resonator klystron response at frequencies
above the pass band. The gain expressions have been ex-
pressed in factored form in the case of staggered tuning but
numerical calculations in the super pass band region have
not been completed due to computational length and complexity.

Several subjects in large -signal beam theory are treated. The
multigap problem is formulated in terms of an integral equation
which is solved within the framework of second order pertur-
bation theory. The disc-model of space-charge forces is used
to derive a large -signal equation of motion for a finite diameter
beam. Solutions to the equation indicate different space charge
reduction factors for each harmonic of the modulating voltage.

Statistical mechanical methods are used to derive equations of
motion corresponding to the infinite beam model. Terms ap-
pear which cast doubt on the infinite beam model near cross-
over. The new terms are simulated by the introduction of
phenomenological collision loss terms which impede the onset
of crossover.

Our results still generally uphold the idea that the klystron
can be built as a broadband device with sophisticated phase
versus frequency characteristics.
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I. General Introduction

In an earlier engineering report(I) there appeared among

other things an analysis of the gain and phase versus frequency

characteristic for a many-resonator klystron. The analysis

was based upon a single space charge mode-small signal model.

In addition, empirical evidence was cited as a basis for pre-

diction of performance of the high signal level gaps and drift

tubes for a very broad band klystron having excellent phase

linearity in-band and normal klystron efficiency throughout that

band.

The analysis consisted of manipulations of well-known

space charge relationships. The resulting design called for

tuning of the many resonators to resonant frequencies outside

of and above the pass band frequencies. This produced a gain

characteristic flat and linear in phase within the pass band but

it resulted in the possibility of an enormously large gain at one

frequency above the pass band. Stagger tuning was recom -

mended as a means of eliminating the large responses above

the pass band. While the analysis is believed to be most con-

vincing regarding the pass band frequencies, it leaves some-

thing to be desired in terms of conviction at the higher

frequencies.

I. RADC-TDR-62-199, J. F. Kane and R. N. Wilson,
"Advanced Klystron Study," Kane Engineering Laboratories, Palo
Alto, Calif., prepared under Contract AF30(602) -2423 (June 1962)
AD-278 223.
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Much of the work being reported here was aimed at clari -

fying the predictions of tube response at frequencies above the

band. Exact expressions have been obtained for this region as

well as the pass band region but calculations remain laborious in

this region despite very considerable efforts to find means for

simplifying them. However, calculation of pass band response is

a relatively simple matter for those cases which call for great

phase linearity in the pass band.

We have simplified the derivations of formulae here. We

find it necessary in this report to resort to a detailed calculation

of the tube's response at the frequencies above the pass band as a

means of revealing the efficacy of stagger tuning for annihilation of

the super pass band response peak. The numerical calculation of

gain in the super pass band region has not been completed due to

computational length and complexity,

Our work in large-signal theory has progressed in several

areas. We have formulated the multigap problem using the infinite

beam model for space-charge forces. We obtain an integral equa-

tion for the displacement vector which provides a convenient starting

point for numerical calculations. We have not been able to obtain

closed form large-signal solutions to the multigap problem because

of the difficulty with boundary conditions at the second, third, etc.,

gaps. However, we have solved the integral equation for the case of

two gaps, within the framework of second order perturbation theory

and this solution displays several interesting features.
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We have formulated the large -signal problem using a

disc-model for the space-charge forces. The equation of

motion takes a more complicated form than that of the infinite

beam model. We content ourselves with an approximate large-

signal equation of motion which we can solve exactly for certain

forms of gap modulating signals. The solutions exhibit space-

charge reduction properties and it is shown that a different

space-charge reduction factor occurs for each harmnonic of the

modulating voltage.

We next develop the infinite beam model starting from

statistical mechanical foundations. The resulting equations of

motion contain heat diffusion terms in addition to the usual

terms which occur in the hydrodynamic equations of beam theory.

The extra terms appear to become large at crossover and this

indicates that the infinite beam model, which pictures the beam

as a set of charge planes, may cease to be valid near crossover.

We take a step toward representing the diffusion terms,

mentioned above, by introducing a phenomenological collision

loss term into the infinite -beam model equation of motion. We

are able to solve the resulting equation of motion in closed form

in the case of modulation at an infinitesimally extended buncher

gap. We find that the presence of the loss tends to impede

crossover.

Finally, we remark on some of the directions which future

large-signal beam theory might take. There are still many
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interesting and difficult problems in large -signal beam theory which

remain to be solved. In fact we may claim, so far, only to have

scratched the surface- in this particular branch of the broad field of

non-linear oscillations.
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II. N Resonator Gain Formula

We identify a drift tube by assigning to it the number

of the resonator which precedes it. The resonators are

numbered consecutively from 1 to N starting at resonator

number 1, the input resonator. We are interested in the

peak values of the a-c current and velocity modulation on

the electron beam. These are denoted as follows.

a-c current entering the nth resonator inn

th
a-c current leaving the n resonator in

a-c velocity entering the nt resonator vn

th
a-c velocity leaving the n resonator vn

In order to work with dimensionless matrix elements

we shall measure a-c velocities in current units as given

below.

For the nth gap the following transformation applies.

(Z r I0IQ h ,...(I 

..
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where in MI(S units

g = -u °

z M 2 T_ Z (W) gz is dimensionless (2)
n n u n n

0

9g is an angular measure of time delay in the gap.

W is the operating angular frequency

a is the electron beam' s radius

E is the dielectric coefficient of empty space

I is the total d-c beam current
0

7 is the specific electronic charge

u 0 is the d-c beam velocity

r is the plasma reduction factor for the beam
and drift tube

M is the gap coupling coefficientn

Z n(W) is the gap impedance at the operating frequency

* L measures transit time delay in radians of the
operating frequency in the structure to which the transfor-
mation applies. Due to the linearity of the formalism, only
the total phase delay (flight time for beam electrons traversing
the entire tube structure) is important. Therefore we have not
bothered to attach a phase delay to each tube section. Rather,
the total delay is prefixed to the composite tube gain expression
at a later point in the analysis.
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For the nth drift tube the following transformation applies.

(3)

where 0n ( d )/u° ; Wq = rw and w is the beam plasma

angular frequency. dn is the length of the drift tube.

We apply the drift tube and gap transformations in the

same order as these are encountered by the electron beam in

traversing the tube. The first resonator gap calls for special

attention because it is externally driven and is supplied with

an unmodulated beam in all cases where the drive power

supplied is large compared to available noise energy on the

entering beam.

To account for first gap conditions we set

(i)=

3M, %)(4)

This is equivalent to the assumption that a peak r-f voltage
V exists on the first gap at all frequencies. Thus the circuits

used in applying external drive have been temporarily excluded
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as factors in the broadband properties of the rest of the tube.
th

Now entering the n resonator we have

+.. (5)

where Lpt :d ln/U0 and dln is the distance between the
th

centers of the 1st and n gaps.

Noting that the peak r-f voltage on the nth gap is given

by

V,= U3 • (u)M• (6)

we can write

(7)



-9-

where K = e gM-gl,-m- MnZn(•) V /V is of course the gain.
1U n nn 1

0The relatively complicated quantity representing the modified

velocity is of no immediate interest in a gain calculation.

The matrix (Dn) has eigenvalues X1 , X2 = e and is

diagonalized by U where

'IM (8)

with

t) 0UI (9)
)

A
We write (G) in the form

A m e e the foloin definitons.

•Lo (01, 00)

and make use of the following definitions.
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WDU 0e2 1)

0~,~~ A
L401L ~ i K9 ) i (

0(h) I (3



A
The vector (0) now becornes

I we specialize the tube design by setting all n drift tube

lengths equal we have

10-t

=Za

We notice that

(®r.)~t) (2*L~~ + Ai (17)

whe re

(-I)

This is the same notation that was used in the previous

engineering report. (2)

In addition, we observe that

(A) (19)

2. RADC-TDR-62-199.
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Multiplying the first few matrices on the right of the gain ex-

pression into the vector 0 we get

= 4 ~ ) +-(20)

~ =( L~3 (21)

+ ( 4p.44LU 3  LcoOtZ'A X - I ()2)

etc. Observation of the above polynomials and the manner

in which they are generated shows that the gain can be written

VII

where

A (

,_•. . . •(24)

C
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which determinant is (N - 2) by (N - 2).

If there is no stagger tuning the ui are identical and

the gain becomes

LAIs

This result we have seen before.
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III. Computation

We have searched for simple means for evaluating the

determinant I ALI such that a tube design engineer could per-

form design calculations at a desk in a few hours. We have

not as yet succeeded in this. To perform the calculations for

a tube of four or more low level resonators is still a very labo-

rious undertaking without a computer. Computer programs

exist, however, which would permit stagger tuned pass band

computations in a few minutes. In consequence of this, we

have developed the following technique for desk computation,

The gain determinant JAZ I , when written out, appears

as the quotient of two polynomials in the modulating frequency.

We wish to express these two polynomials in factored form

for the case of non-synchronous tuning. Since the factor-

ization is somewhat involved we first present the general

results. It is to be noted that the factorization is performed

separately for the numerator and denominator, thus avoiding

the pitfalls of perturbation theory in its usual sense.

At the end we present a few special cases.
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Results

We express the gain determinant, given by Eq. (39)

below, in factored form when the cavities have resonant

frequencies

1, (26)

and we allow a change in drift tube lengths

_->-0. ,+ A ýý .(27)

For an (N - 1)-dimensional determinant we obtain

= -(28)
Al

where

0-'

U.-
+ I I.

J
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N 0 K0 a(w-a )(w-b ) (31)

N.j -K 0a 0(w - a 0) (w -b 0) (c + tane A e ) (3 00 0 0(32)

-aof[ A lj (w -bo) + A 2 j (w - a )

D = (w c 0C (w d 0) (33)

D. = w 0 (d 0 )60 (34)

K = 2 cos eo (35)

a =I -= • tan 0 (36)

b .G
b = - (37)

) =lo Z~o-(38)

"so' c' QI Q' are given by Eq. (48) below.O0 0 0

Factorization

We begin by rewriting the gain determinant, given

by Eq. (24), in the following form. Note that N of this

section is to be identified with N - 1 of Section II.
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N \ ", (39)

This is accomplished by some interchanging of rows and

columns in Eq. (24). We examine cosh u

& +iCU•ac -4 ) (40)

We wish to express A in factored form when uI 1 u2

4 u3 4 ... 4 UN.1 * We assume that the only frequency

dependence of g is in the multiplicative w term. Define

where Q2 is a constant frequency chosen equal to woI the

resonant frequency of the cavities in the synchronous case.

I'* = - (42)
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Q may be given any value. It occurs only for dimensional

reasons.

Write 2 cosh u0 in factored form. The synchronous,

2 cosh u , is

as can easily be verified from Eq. (40). Introduce the notation

( W 6. -t

where

K = Zcoso

a=I--tan 0 (45)2Qc

b jGc

Factoring Eq. (43) we can write

Lo-ý' ---- k4 L" .(L t- L, ) (46)

where

; 7q Vj (47)
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-LeS

(48)

S( S I I

We consider the case where

>" -,i_7 (49)

Then

1001 (50)

where we have allowed 1/(4Q1
2 ) to be comparable with unity.

To treat the non-synchronous case we start with the

synchronous case and consider the effect of changing the

resonant frequency of the jth cell. We also allow a change

in drift tube length. Eq. (39) is only valid when all drift

lengths are equal. Hence we change all the drift tube lengths

by the same amount. We let

Li --- W'° + SS.--•.• t• (51)
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(52

0---. qa + 09<< (53)

Then keeping only lowest order terms

Y* I (54)

+ (55)

where

V (56)

fa&c A0
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('-. --

do ,+.,(57)

d. .1

j - (58)

Eqs. (54), (58) tell us how the zeros and poles of Eq. (46)

move when we change the resonant frequency of the cavity

and the drift tube length associated with cell j.

To get the perturbed 2 cosh u0 we only have to put

in the changes in K, a.

- o(59)

,, -- -T;- ,1 e(60)

2 (61)

ate
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With Eqs. (54), (58), (59), (61) we obtain 2 cosh u.

3

S•/,•= •0•,Q-•C(I-ta-~e ta9A8)••-•• 1z
I - a-ýGAS)10-to 164j(14-to(62)

Note that we have treated the movement of the zeros and poles

separately and they are constrained in their movement by

Eqs. (51), (52), (55), (56), (61) in order that the laws of

physics remain satisfied. That is, we allow only move-

ments of the poles and zeros which are physically realizable.

Whether the chosen movements are practically realizable is

another question.

Now we turn to the problem of evaluating the gain deter-

minant given by Eq. (39). First we note the following properties

of a special matrix and its determinant. Consider the matrix

"•"0 "(63)
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The eigenvalues ofi are

A,2 =k y+tC-4.&!- (64)

The matrix which diagonalizes'q- is

'1is

13 - N J " I, m = 1,-- (65)

We now write Eq. (39) with the aid of Eq. (62)

6 -" •(66)

where

$d-I

J. 2 1 (67)

p,tN 6  •*N DD, 'l)

D+ D3

" ~(68)
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where

D +Dj = (w - co -Wo6 ) (w-do + wo61 (69)

No+ N = KoClO -)(1 t -tan9 0A )

(70)
-a Aj)(w .bo- ,A2j)

Note that we have calculated the effect of tuning separately

for the numerator and denominator of A . That is, we

calculate the movement of the poles and zeros separately

and in this sense the treatment differs from perturbation

theory. Perturbation theory fails when we must manipulate

resonant quantities; e. g., move poles and zeros of a gain

determinant.

The denominator of A given by Eq. (67) appears in

factored form. It remains to factor the numerator, • ,

given by Eq. (68). We factor A0 through first order in the

tuning. Rewrite J in the form

11 (71)

where

,0N, D. D. 0

0D - L.DO
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NO = Koa (w -ao)(•-bo)
o 0 a0 (-a0 )w b0)

N. -K a (w -a ) (w -b ) ( + tan 0 A 0)

-K0 a0 [4 13 (w "b0 ) + Azj (w - a0 )] (73)

DO c0) -

D. - w 0 (d o - c )6

We transform ') with the matrix U given by Eq. (65)

and note that

(74)

The result is

-o(75)

where

(76)
O0•.
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XL ,+1, 14d~~)* (77)

S A4 (79)
ILo

Also

" kt~ j•,," ', ...... .... - ' .

3 1
t

', € e-

(79)

We wish to calculate j through first order in the quan-

tities ?tij . To see what this is, consider expanding A t by

minors along the first row.

S-- ,p,,.,"q' . ,,.,.e
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- I *'" ~ '; -- .... •,0-' (80)

9

I,

+

All terms in (80) except the first are second order in the

for.. and therefore are negligible in our approximation.
( J

Through first order the first term is

Now the determinant multiplying XI in Eq.(1 stesm

form as our original determinant •)1 except of dimension

(N - 2) x (N - 2). Hence through first order
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I I
S I

"-I

(82)
PO-I,

I

S'lA• g3 q-O' - -. . .- -o

[ (83)
A A 3

2:2.
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We obtain immediately by induction that, through first

order in the T1'ij I

p�-i N-I

A -e i AJ+Z ITEX (84)

Eq. (84) we express in the form

'-I' (85)

Thus what is left to do is calculate 7I•|

S(86)

We tue Eq. (65) and (72) to obtain

= Vjt(NV.Vo + Do Uzi)

+ U1-, A ., , + - u ,, ). (87)
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Inserting the values of Uij Eq. (87) becomes

A D tJa (88)

Combining Eq. (85) with (88) the result is

p-I (89)

or

V,I, Uo -I .

(90)

N -I

,- "z i ~*-- NI±D e O
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From Eqs. (73), (55) and (50)

-r --i4• 1o , ,

- eo 2o (t;}',L' (91)

•tic ( 4.o C '-=) S;

Substituting in Eq. (90) we obtain

v$-I

eI.(92)

where

=L (6. 4- A ,)W-

+ G-C t"j -C L

N

Eq. (93) is a quadratic in w which is easily factored.
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Special Cases

We look at the following special cases.

(1) -t . ,a .0St.C
7-CLC.

We consider E negligible and Eq. (93) becomes

- 2..., 4 --. (U (-4•o (%3-.)

k

In this approximation the gain determinant (39) is

independent of frequency when 6k 0.

-. ,, -,.,( 9 6 )
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(2) In addition to the conditions of (1) we let f 'k = 0.

Then

+ '¶ )~c'~n~ £~(97)NN

(3) Same conditions as (2) but with A 0 0.

(98)

The special case 6 = (-1)k 6 requires N - 1 be an even

integer, if

S(99)

is to be satisfied. However, we find

S= o (100)11=1 N

in this case. Hence, to the order of our approximation,

this type of stagger tuning has no effect on the numerator



-34-

of the gain determinant. It makes the poles of order (N - 1)/2

instead of (N - 1).

(4) In addition to the conditions of (1) we let

i (101)

(102)

Hence

~ (103)

If, in addition, A 0 = 0

," lj,
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In this case

ko*-~ ( 40 +Of (105)

Hence this type of tuning does not remove the confluence

of the poles.

From (3) and (4) it is clear that we should make

all 6's different. For example:

(5) In addition to the conditions of (1) we let A e = 0

and

Ts l a pl k (zes mv i106)

This will make all poles and zeros move in first order.
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IV. Numerical Computations

At this point we have not completed any numerical corn -

putations which are based on stagger tuned tubes. As a result

we are not yet in a position to demonstrate by actual computation

that the so-called super pass band gain peak can be annihiliated

or reduced to a safely small maximum value. On an intuitive

basis we do not question that this gain peak can be annihiliated

in practical structures. For the design of broadband structures

with gain and phase linearity as required, we use the degen-

erately tuned gain formula which applies in the region below

the resonant frequencies of the resonators.

Figure 1 shows the real and imaginary parts of cosh u as

a function of frequency. This represents a tube having 10 mega-

watts of output capability using a beam microperveance of unity

near 2800 megacycles per second for which 6 = 0. The range

of frequencies in which the real part of cosh u is greater than

unity and within which the imaginary part of cosh u is negligible

is of the greatest interest here. So long as the imaginary part

of cosh u is small, there will be at most a small and monotonic

departure of the phase versus frequency curve from a strictly

linear curve.

Figure 2 shows the gains whidh can be expected from

klystrons whose small signal level resonators are numerous
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S.!

-Moojw Mr•.4

- -. I a .14 -. I0 -. 016 -- o't .0 .10

Fig. 1: Real and imaginary parts of cosh u
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40

Ito

II I I ! I
-06 0

Fig. 2: Gain versus frequency
for multiresonator klystrons in
flat phase ve frequency region
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and closely spaced. The drift length used in Fig. 2 is 2 inches

so it can be seen that very useful tubes can be built in lengths

of two feet. We can compare this with tubes which provide

45 db of gain in 5 feet of length. This shows the dramatic im-

provement available in terms of gain per unit length by the use

of numerous closely spaced resonators. It can also be seen

in Fig I that there is a near zero of gain at a frequency of

about 1-1/2% above the resonant frequency of each cavity. This

null would be so located in stagger tuning as to radically reduce

in size the gain peak which would be obtained in the case of de-

generate tuning.

It is important to notice how slowly the real part of cosh u

(in Fig. 1) sinks down through the value unity as detuning toward

lower frequencies takes place. There is less than 10% change

in going from 6 = . 1 to -. 2, for example. Now the magnitude

of cosh u in this region is sensitive to the value of perveance

used in the beam. We see that we should have used a beam

microperveance of about 2. If so, we would have obtained a

curve showing the real part of cosh u remaining appreciably

above unity for more than 15% in frequency range. Thus we

would have obtained gain magnitude curves such as those of

Fig. 2 which are higher and much flatter in value. In addition

we would have found ourselves with much more room for stagger

tuning of the resonators. It is regretted that the pressure of

time has prevented our carrying out such computation.
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In a tube such as we are describing it is important that the

many short drift tubes present no feedback possibilities due to

drift tube propagation at harmonic or other frequencies. This

is especially important in the vicinity of the resonant frequencies

where gain may be high. Figure 3 shows how drift tube dimensions

are chosen.
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V. High Level and Output Stages

No trustworthy or tractable design theory exists in a

form useful for designing the high level klystron stages. In

our previous report (3) we treated these by reference to em-

pirical evidence.

Also in our last report we developed expressions for

a multi -element output section capable of presenting to the

klystron beam an optimum value of output gap impedance

over an adequate band of frequencies. We find no need to

expand upon what has been presented. Some concern has

been expressed to the author regarding the bandwidth pre-

dicted. This concern derived from comparison of predictions

of bandwidth capability with similar predictions for duplexer

devices which, of course, must be matched to waveguide im-

pedances throughout the band. This is not the case in the

output of a modern high-power klystron, however. We always

desire a large VSWR seen looking back into such a klystron.

Without this, tube efficiency would either be severely reduced

in one case, or else the efficiency would be cut in half and

excessive r-f voltage would appear in the output resonator

in the other case. In this latter case, electrons would be

3. RADC-TDR-62-199.
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reflected back through the drift tube in a manner which would

tend to cause spurious oscillations or other erratic tube

behavior.

Some brief experimental work was done during this

program toward obtaining measured curves of broadband

output resonator performance. This work has not culminated

in presentable data. This is due to a poor quality of r-f

contacts used in the cold test assembly. It was considered

to be not of sufficient interest to undertake the expense of

preparing soldered output sections in order to demonstrate

what is believed to be most soundly predicated on well-known

information.
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VI. Infinite Beam Multigap Theory

1. Introduction and Summary

We present here the results of some work on the modulation

of a beam by many gaps. The goal was to obtain a large signal

description of the multigap problem. The results obtained have

been more modest due to difficulties in applying boundary con-

ditions at the 2nd, 3rd, etc., gaps.

The infinite beam model is used to formulate the multigap

problem. The displacement vector formalism, (4) which has been

successful in the large signal description(5) of a beam modulated

at an infinitesimally extended gap, provides us with an integral

equation for the displacement vector in the multigap situation.

The integral equation for N-gaps is as follows.

S~N

0. co-,+.,'

*~~J +A (974' +

(107)

4. RADCI-TDR-62-199, IV Eulerian Theory, Section A,
p. 61.

5. Ibid, Section C, p. 91.
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In Eq. (107), a- = ;e• is the dimensionless displacement

vector, x = P e Z'Ae = W/Vo0 a i = V i/Vo 0 @ = wt, and 4i

is a phase angle associated with the ith gap. This equation

provides a convenient starting point for numerical calcu-

lations. We have used infinitesimally extended gaps but

this is not necessary. For gaps with finite width, the

same form is valid with the 6-functions replaced by

functions characterizing the gaps.

We have solved Eq. (107), for the case of two gaps,

within the framework of second order perturbation theory.

That is, we have kept terms through & (CiLJ) . The result

is

o -r+

IL0 X

+ - ~~)wx)

-'O
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(108)

- ~ ~ ~ A; J K tJ±2a)(~"A

o- ( ).0.4 ky.

In Eq. (108) we have positioned the first gap at xI = 0

and assigned f1 = 0 .

This solution displays several interesting properties.

The solution in the region 0 < x < x 2 is just that obtained

by expanding the large signal solution(6) through & (a1 2 ).

In the region x > x2 the first two terms are just the super-

position of the solutions which would result if we modulated

the beam separately by each gap. The last three terms are

interference terms and occur because modulation exists on

the beam when it enters the second gap. The first two of

these terms are what we would expect if at x = x 2 the beam

had displacement and velocity modulation respectively in the

amounts shown below.

xLL

(109)

6. RADC-TDR-62-199, IV Eulerian Theory, Section C,
Eq. (IVC-73), p. 126.
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The last term is a contribution which seems to mix the

arriving displacement with a second gap displacement

whose electronic phase is 90 out of phase with the ex-

citing voltage. The complexity of the solution presented

by Eq. (108) serves to demonstrate the difficulties which

arise in a large signal treatment of the multigap problem.

It is the interference terms which cause the trouble.

However, it is just these terms which are of great interest

in the large signal situation.

The space-charge field, velocity field, current and

charge density in the modulated beam can be calculated

with the aid of formulas which have been previously

derived. (7)

In part 2 we derive the integral equation (107) for

the multigap problem.

In part 3 we calculate the second order perturbation

theory solution given by Eq. (108).

7. RADC-TDR-62-199, IV Eulerian Theory, Section C,
part 5, pp. 128-131.
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2. Integral Equation for the Multigap Problem

For a beam modulated at N infinitesimally extended

gaps, the differential equation (8) for the displacement vector

is

Ie 0 L +)K

(110)

where xi, *i are the position and phase associated with the

Sth gap. We define

N

iY-i

Express (r(x, 0) in the form

Eq. (110) then yields

S L F (113)

8. RADC-TDR-62-199, IV Eulerian Theory, Section C,
Eq. (IVC -56).
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F e - (114)

We solve Eq. (113) by Green's function methods. That is,

consider the function G,

(115)

S 6~'h'n') Ij~w'~ls'(116)

Thus G is a solution to

(-L + Y(• ,! o.(j (117)

except at the point x = x' . The solution for G which satisfies

the right boundary conditions is

£ V K 0 (118)

The boundary r-nditions have been chosen so that the solution

Sr(x) -q. (116) is not affected by the ith gap unless

rH
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x>xi. WithEqs. (118), (116), and(112) we obtain

(119)

However, from Eq. (114)

(e -) Fr(120)

and therefore

(12,1)

Hence, Eq. (119) takes the form

= F(,,'J 0-,i. K)( (122)

Substituting the expression (111) for F in Eq. (122) we obtain

the desired integral equation (107).
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3. Second Order Perturbation Theory
for the Two Gap Problem

We expand a in power series in the a'

V-o- (123)

Through second order Eq. (107) becomes

+ (124)

+ + PS'CK~~ ~c + K'I

Integrating the 6' terms by parts and calculating the first

order contribution we get

c'~ 0 ) X40

(125)

T+



52 -

We now substitute this first order solution into the right-hand

side of Eq. (124) and perform the indicated integrations. The

result is given by Eq. (108). The factor 1/2 which multiplies

the quantities

arises because the derivative

-4- (127)

jumps from zero to (a 1 /2) sin 0 at x = 0 and the 8-function

evaluates this quantity at its average value, (a.1 /4) sin e
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VII. Large-Signal Disc Model Theory

1.. Introduction and Summary

We consider the disc model from the large-signal

point of view. For the infinite beam model the space-

charge forces are characterized by the Green's function

K Ox,-,,.9 = 1 )(,-., 1 (128)

while for the disc model we have

,- -j e.'!,

_ ( (129)

6 = be.a., rcaJu•I

We derive in part 2 an equation of motion for the

disc model which is valid when the signal level is large.

The result is t

X J JA e_ 0

F1 (130)
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whe re

A =ie4t, (131).-•t

is a remainder term which vanishes in the case of the infinite

beam model. It is conjectured that the remainder terms are

small and that a good approximation for the disc model may

be obtained by neglecting these terms in Eq. (130).

In part 3 we investigate the dispersive properties of the

waves characterized by the disc model equation of motion. We

find that, while the infinite beam model gives rise to two non-

dispersive space-charge waves, the disc model on the other

hand leads to four waves, all of which are dispersive. The

wave numbers in dimensionless units are as follows.

I- + X + a r
t 7- (LS%4. - )L

Solutions 1, 2 are space-charge waves and solutions 3, 4 are

evanescent waves which damp exponentially.

The dispersive properties of the disc model space-

charge waves have the effect of providing a different space-

charge reduction factor for each harmonic, r.
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(133)

ttL+

This has the effect of distorting the form of the disturbance

on the beam as it travels down the drift space.

Z. Large-Signal Equation of Motion
for the Disc Model

For one -dimensional flow(9) the equation of motion is

" 4• (134)

In the following we treat K(x, x') as a function defined as

the limit of a sequence of well-behaved functions. These

functions are infinitely differentiable.

9. RADC-TDR-62-199, IV Eulerian Theory, Section C,
p. 93.
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Consider the term

I S~Id%1JA (135)
'A -.- %+"

'•e.O'K4 
vd

The Taylor operators allow us to write Eq. (135) in the form

= e e-(136)

Expanding e and integrating the nth term n-times

by parts we get

x e.. ,',, (137)

whe re

e,- (r9. + (138)

Eq. (137) can be written

- e (139)
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because

3- 0 (140)

This follows from the property

~(CLk ) w -")---- 0 (141)
% .*~ ±

We expand the exponentials in Eq. (139)

t  4jz Wh ý-týx) CPO~t (142)

The operation (S/Ox)n on K is the same as (-B/Bxl)n

on K. Integrating by parts, n-I times, Eq. (142)

becomes
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Introduce a new summation index

k = n + m -I

I < rn < 06 (144)

m-I < k < 00

We now interchange the order of the sums

mi

4

3

0 k

1 2 3 4 5 6 7 8 9

o < k < 00

I < < k+ 1 
(145)
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Finally we get

&.. k+

In the case of the infinite beam model

(147)

and Eq. (146) becoms.

k no 2T ( OK9

(148)
k~o

AL+

We show that the second term in Eq. (148) vanishes.

To demonstrate this we show that

k40
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We can include the term m = 0 since 8/8x(l) = 0, and hence

we wish to prove the following lemma.

G(L1L-,1 (- )-ru-"-('t,)"to)-- o 0 (150)

In general, we define G(k, A ) by

First we develop a recursion relation

=0

li-I

Now consider

(-10.. (r(153)
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and apply the recursion relation.

~~+ G~o)
o~L X~~ii.w~~ri-,)+G~ (154)

However

GC7(I-i,o)- C 3:1, (155)

so

&G( 6, 11= 0 = ;3 (156)

Apply the same reasoning to G(k, 1). We have

o= w - IL GO(-e + G (O, ) (IS7)

but

G (4-),I1 - - -.... (is8)

and hence

(;o ( k = 0,3, V . (159)

By induction we obtain

•o. &(4,A,) M k (160)

and a special case of this relation is the desired lemma,

= o (161)

which lies, so to speak, on the edge of the hierarchy (160).
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We have proved that Eq. (148) reduces to

._T (162)

Thus for the infinite beam model Eq. (134) becomes

S 4+~ I+ o- or- o(FcK+S. (163)

This equation was derived in a more physical way in a

previous report. (1 0) The development above is included

here because it is needed for the disc-model discussion

below.

For the disc-model we return to Eq. (146) which

applies to any one-dimensional model. The disc-model

Green's function( 1I) is

("h (164)

-S -E'). +. k f (165)

10. RADC-TDR-62-199, IV Eulerian Theory, Section C,
pp. 112-121.

11. R. N. Wilson, "Large Signal Space-Charge Theory of
Klystron Bunching," M. L. Report No. 750, Microwave Lab.,
Stanford University, Calif., September 1960, p. 109.
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We substitute Eq. (165) into Eq. (146). The result in

+ V , a x),'" (166)

The last term in Eq. (166) can be rewritten as follows:

I _I_

(167)

Combining Eq. (167) with Eq. (166) the disc-model equation

of motion becomes

F)(168)

where

-. & 
(169)
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We note that the integrand of Eq. (169) vanishes at

x = x' , but the peak of the weighting function, W, lies at

x= xNO.

(170)

4 %D

W ot,,C)A', (171)

The quantity is a weighted average of the quantity

t+,)

about the value x' = x, with weighting function W . 6k

vanishes in the two limits

S o (173)

where b is the beam diameter. We conjecture that

(174)

is small compared to the other terms in Eq. (168). In this

case a good approximation to the disc-model equation of
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motion in

~J, e,

(175)

= - Fp •.i+,-,e')

3. Dispersion Characteristics of the Approximate
Large-Signal Disc Model

To determine the type of waves which the disc -

model supports, we deal with the homogeneous version

of Eq. (175) and express w(x, 6) in the form

(t 0) e W ,(U) (176)

Also we express the kernel function in the integral term of

Eq. (175) in terms of its Fourier transform.

S,(177)
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Upon substitution into the homogeneous form of Eq. (175) the

dispersion relation which results is

(178)

If we solve for 13(w) we obtain four roots. Through leading

order in X* these are

The waves PI,2 are space-charge waves and P3,4 are

evanescent waves.('2) Thus whereas there were only two

non-dispersive space-charge waves for the infinite beam

model, we now have, in addition, two evanescent waves.

Also all four of the waves characterized by Eq. (179) are

dispersive and this makes the situation more complicated.

For modulation by an infinitesimally extended gap a

first order solution has previously been obtained. ( 1 3 ) We

shall here neglect the evanescent waves and match boundary

12. R. N. Wilson, M.L. Report No. 750, pp. 112-116.
13. Ibid, pp. 112-113.
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conditions in the same way as for the infinite beam

model.( 1 4 ) We let

~ 0

and approximate the second of Eqs. (180) by

So,- 4r I1 -+u Ja~M6(181)
X--

We obtain the following solution.

1 , _)__ (182)

2

This solution agrees with the solution obtained before,

at points down the drift space such that the evanescent

waves (exponentially damped) are negligible.

This suggests that a good approximate solution is

provided by neglecting the evanescent waves when we fit

14. RADC-TDR-62-199, IV Eulerian Theory, Section C,
p. 124.



- 68 -

the boundary conditions. The resulting solution is meaning-

ful only at distances from the gap which are large enough so

the evanescent waves can be neglected.

We approximate Eq. (180) by

Qa- jo- 1 (183)

-01

= AAm A,~I

The d-c part of Eq. (183) gives rise only to evanescent waves.

The solution is

'~4 1
00 xxL TTT•"' JL )M-e;'.J•j,

Eq. (184) shows that there is a different space-charge reduction

factor for each harmonic.

= (185)

b
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In the case of the infinite beam, R = 1, we found that ther

disturbance on the beam, caused by the modulation, traveled

down the drift space without change in form but changed in

amplitude by the multiplicative factor

(186)

This is no longer true with the disc model as shown by Eq.

(184). Each harmonic has a different space -charge multi -

plicative factor

v 1'+ (187)

and the reason for this behavior lies in the dispersive

properties of the space-charge waves.
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VIII. Statistical Mechanical Formulation

of the Infinite Beam Model

1. Introduction and Summar,

We formulate the infinite beam problem within the frame -

work of statistical mechanics. We start with the statement of

Liouville's theorem for the many particle density function and

derive from this an equation of motion for the electron beam.

The result is

1 ( 188)

O~r

- J (189)

V = d-c beam velocityo (190)

e(n + 6n) = electron charge density

The term on the right is a diffusion term which appears to

become large at and near crossover.



-71 -

We conclude that the infinite beam model, which

pictures the beam as a set of charge planes, ceases to

be valid near crossover.

2. Derivation of the Hydrodynamical
Equations of Motion

We start with the many particle distribution

function,

,w (191)

for two species of particles, electrons (qi, pi) and ions

(QiI P.) According to Liouville's theorem the total time

derivative of W vanishes.

The positions qi, Qi and momenta pi, P. satisfy

_ =~ P.M. e E'+ B

15. R. C. Tolman, The Principles of Statistical Mechanics,
Oxford Univ. Press, New York, N.Y., Ist edition, pp. 48-52.
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We define the single particle electron distribution function

by

and normalize the density function W so that

- , (195)

V. (196)

Eq. (195) gives the electron particle density and Eq. (196)

gives the total number of electrons.

Integrate Eq. (192) over all coordinates except ql, P1 '

The result is

S0 Liz (197)
.. ,

All other terms vanish since, for example

(198)
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However, the last term vanishes because W is assumed

to vanish at the boundary of integration in the phase space.

We substitute for pi in Eq. (197), from Eq. (193) and

obtain

(199)

as the differential equation satisfied by the single particle

distribution function.

Note that we have not treated the electromagnetic field

statistically. This implies an assumption as to the macro-

scopic reproducibility of E, H.

For our beam model we write cax, p) in the form

whe re

w = n6(F )

-1k -- (201)
P = mV

PO is the d-c beam electron momentum and we have assumed

that the d-c beam is uniform with electron charge density en.

In what follows we shall neglect magnetic effects. Eq. (199)

becomes
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+ ~ o
FAIL (202)

To obtain hydrodynamical equations of motion we define

1Pa (203)

th

and take the zero and first moments of Eq. (202) with respect

to p. We make use of the following definitions for average

values.

(204)

(j 13f (205)

J3 P (206)

=e e (U. + W)A

e V% e- C I% (207)
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.- ". (208)

First we multiply Eq. (202) by e and integrate over

thp. The resulting zero moment equation is

Ž(209)

since the other two integrals vanish. Eq. (209) is the equation

of continuity of charge for the electrons.

To calculate the first moment equation we multiply

Eq. (202) by ep1 V/m and integrate over p.

With Eq. (203) the integral term in Eq. (210) can be rewritten

&.~~~ V ,*~ ,, +. ("iS~(M +7~ FAI 0'

+(~+s~)(211)

We rewrite the first term in Eq. (210) as follows. From

Eq. (208)

(212)

Sfb 4 C t, +Jk.) A
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Hence

-; ( +a +(4S~. TAfI tit (213)

but using Eqs. (209), (207) and (212) we can write

v+ A,
__ -- ~~?~A.L'(214)

Combining Eq, (213) and Eq, (214) we get

(215)

+ + st

Substituting Eqs. (211) and (215) into Eq. (210) and re-

arranging terms we finally obtain

(216)

which is the hydrodynamical equation of motion. The left-

hand side is the well-known equation of motion for the beam

in Eulerian coordinates
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j tt (217)

r refers to the electron position in the presence of the

modulation. (16)

The term on the right-hand side of Eq. (216) is a heat

diffusion term.

3. Remarks on the Large-Signal
Infinite Beam Model

We specialize Eq. (216) to the case where may =

-A. -b... .

Ap = z Ap(z,t) and E = I zE(z,t). The result is

- ~ t~A)(218)

We have solved Eq. (218), neglecting the right-hand side,
within the framework of the infinite beam model.(17) The

solution was valid up to the point where crossover sets in.

Eq. (218), on the other hand, is a more general equation.

It was pointed out in our discussion of the infinite beam

model that at crossover the charge density becomes infinite.

16. RADC-TDR-62-199, IV Eulerian Theory, Section A,
pp. 62-63.

17. Ibid, Section C, pp. 91-139.
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That is, in the quasi -Eulerian formalism of our previous work

the charge density, at the actual position of the electron is

given by

flt + ir* 0(~,#, ) i' (219)

and I + Do-//)x 0 passes through zero at crossover.

It was mentioned in connection with our previous analysis

that one might question the validity of the infinite beam model

at and beyond crossover. The infinite beam model assumes

that one can describe an infinitely extended ion neutralized

electron plasma by a set of charge sheets constrained to move

in one (z) direction. The derivation of Eq. (218) has avoided

the charge sheet picture and enables us to make statements

regarding the validity of the infinite beam model. Eq. (218)

states that the infinite beam model is a good approximation

when the right-hand term is negligible. However, let us look

at this term near crossover. We rewrite it in the form

+(220)

where

s -~~ ~ o(221)
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At crossover, according to infinite beam model theory,

n + 6n passes to infinity and it would take a peculiar can-

cellation to keep the expression (220) from becoming very

large. On the other hand, the terms on the left side of

Eq. (218) add up to zero within the framework of the infinite

beam model. We therefore conjecture that the infinite beam

model ceases to be valid at and near crossover.
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IX. Infinite Beam Model With

Phenomenological Losses

1. Introduction and Summary

In our statistical mechanical treatment of the infinite

beam model we found that the hydrodynamical equation of motion

is an approximate equation which neglects heat diffusion type

terms. We attempt here to include such effects in an approx-

imate way by the introduction of a collision loss term into the

equation of motion. This device is common in plasma theory

and is used to represent the effect of collisions of the electrons

with neutrals. In the present situation this term should pro-

vide a step in the direction of a more realistic beam model.

In part 2 we derive an equation of motion in the presence

of losses. The result is

(222)

The factor 2irl represents the number of "collisions" per

r-f cycle of the modulating voltage.

In part 3 we are able to obtain a large-signal solution

to Eq. (222) for the case of modulation at an infinitesimally
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extended buncher gap. This solution appears in closed form

and contains complete information about harmonics of all

orders. The solution is

7- it, +-I A;-, -xa "ý I
x

where

a (ZZ4)

In part 4 we remark on crossover criteria in the

presence of the damping term. For no losses, crossover

occurs when the depth of modulation, 6, is approximately

equal to Z. 0. Employing the same criterion for the lossy

case we find that crossover is inhibited by the damping.

The critical depth of modulation moves from Z. 0 in the

case of no damping to the value 5.43 in the case of critical

damping.

4A (275)
SC 2.0 2A

5'. 'V2 OrS C
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2. Equation of Motion With Phenomenological
Collision Losses

The infinite beam model hydrodynamical equation of

motion in the absence of losses is

~ li~ 4e - ~(226)

where

(227)

z is distance down the drift space, and , is the displacement

caused by the presence of the modulation.

In our statistical mechanical treatment of the infinite

beam model we found that Eq. (226) is an approximate equation

which neglects heat diffusion terms. We shall here attempt to

make a correction for these extra terms by introducing into

Eq. (226) a phenomenological collision loss term. We con-

sider that the motion is degraded by collision losses charac-

terized by a collision frequency v which is taken independent

* of velocity. Thus we enter a term in the equation of motion of

the form

~,+ t (228)
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Furthermore we assume that the d-c beam is produced in

a way that collision losses in the unmodulated beam are

accounted for, so that we are left with a beam traveling at

constant velocity v0 along the z-axis.

In dimensionless units Eq. (226) now becomes

~ j49 + + +i1I4 +4, R%0.1 E -(X +11) (2279)

where

V/ (230)

Zirri is the number of collisions per r-f cycle of the gap

modulating field.

The device of introducing such a phenomenological

collision damping term is familiar in plasma theory to

account for collisions of electrons with neutral atoms and

molecules. In our present application this term probably

provides a step in the direction of a more realistic beam

model.

3. Large -Signal Solution of the Equation of Motion

We consider the problem of modulation by an in-

finitesimally extended gap located at x = 0. The dis-

placement o is expressed in the form
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Substituting this expression into the homogeneous form of

Eq. (229) we obtain the following equation for the orI(x).

zo 1 ~gX -,(-)=0 (232)

We express o r by a Fourier integral

q-,, e 1(7.33)

This results in the following dispersion relation.

% AX tence (234)

Hence o- takes the fo rm
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We treat the gap as a boundary condition on f.

0•-

-C + -
(236)

The first of Eqs. (236) yields

O7.,= c'. (237)

or

7r- d9) = -V. U A) (238)
t

Making use of the second condition (236) we finally obtain

e. rt4A~c-J'JJŽIj(239)

This solution reduces properly to the lossless case( 18 ) when

' - 0 (240)

18. RADC-TDR-62-199, IV Eulerian Theory, Section C,
p. 126.
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Eq. (239) exhibits a new feature, namely, that the displacement,

o-, caused by the modulation decays exponentially with x. The

I/e point is given by

=(241)

4. Crossover Criteria

It is interesting to investigate the effect of the loss term,

upon crossover criteria. Crossover( 19 ) occurs when

+ •/• 0 (242)

From Eq. (239)

(243)

19. RADC-TDR-62-199, IV Eulerian Theory, Section C,
pp. 137-139.
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To obtain some feeling for the crossover conditions we

consider an electron such that

0_ o (244)

For this phase

a-3 - e.- (245)

Crossover does not occur here if

- ) , .(2 I (246)

The maximum of I(x) occurs at

Y________ (247)

Hence

and

Y-<I (249)

We define the depth of modulation, 6, by



- 3 -I

The -condition (249) becomes

where

(252)

C(M) is plotted below. k = 0 corresponds to no damping and

the crossover criterion (251) is

3.0..
e

2.0

C ( f-) 
1

1.0

0 I I I

.2 .4 .6 .8 1.0

6 < 2 (253)

I= corresponds to critical damping and in this case the

crossover criterion becomes

2e- Ir .3 (254)
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We see, therefore, that the presence of the collision

term tends to inhibit crossover; i.e., the depth of modulation

--- •(255)

is allowed to have larger values in the presence of damping

before crossover sets in.
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X. Remarks on the Possible Directions

of Future Work

We remark briefly on the directions which future work

in beam theory might take.

1. The vector normal mode formalism,(20) although

complicated, contains a fairly complete picture of the inter-

action of an electron beam with some attendant electromagnetic

structure. It provides an accurate starting point for numerical

analysis of specific devices in the large signal regime. The

analysis could profitably be extended to the case of magnetically

focused beams which allow radial motion, in particular to the

Brillouin beam.

2. We have made sizable progress in the large-signal

description of a modulated electron beam within the framework

of the infinite beam model. An accurate description has been

obtained for the case of one infinitesimally extended modulating

gap and the analysis avoids the use of perturbation theory. Some

work has been accomplished on the two-gap problem with the use

of second order perturbation theory. The multigap problem

should be analyzed in the large-signal regime by methods which

avoid perturbation theory.

20. RADC-TDR-62-199, IV Eulerian Theory, Section B,
pp. 71-91.
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Some work has been done which extends the large-

signal infinite beam analysis to the case of finite geometry,

specifically, the disc-model. This is a fertile area for

future endeavor.

3. Our recent work with the infinite beam model

indicates the possible breakdown of the hydrodynamic

theory at and near crossover. Thus if one wishes to push

large-signal beam theory into the region where crossover

is imminent, the problem should be formulated from the

point of view of statistical mechanics. The reason for this

is that terms which are neglected in the hydrodynamic

approximation appear to be significant in the region near

crossover.
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